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PLUTONIUM OXIDATION 
 

A CHRONOLOGICAL 
PERSPECTIVE 

1941-2003 

Jerry L. Stakebake 
Thomas Allen (1) 

May 22, 2003 
(1) Mr. J. L. Stakebake is the sole contributor to the technical content of this presentation. 
Mr. Allen is added only as the submitter and administrative contact needed for publication. 



OBJECTIVE 

• Describe the evolution of the Pu oxidation 
studies. 

• Present the current understanding of 
plutonium oxidation. 

• Describe experimental methods. 
• Discuss “real world” applications of 

oxidation data. 
• Present storage case studies. 
• Where do we go from here? 
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SCOPE 
• Oxidation kinetic studies 

– Experimental techniques 
– Environmental effects 

• Oxygen 
• Moisture 
• Nitrogen 
• Hydrogen 
• Water and Sea Water 

– Material (alloy) effects 
• Pyrophoric characteristics 
• Storage behavior 
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EXPERIMENTAL METHODS 
• Balance weight gain measurements of 

coupons 
• TGA – Semi-micro and microbalance 

measurements 
• Ellipsometric film thickness measurements 
• X-ray diffraction 

– Product identification 
– Oxide film thickness 

• XPS – X-Ray Photoelectron Spectroscopy 
• Electron Microprobe, SEM 
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contributer to the technical content 
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THE EARLY YEARS 
Prior to 1960 

• General Observations 
– Pu is reactive – subject to corrosion 
– Air oxidation enhanced by moisture 
– Relatively inert in dry air  
– Extensive corrosion in inert gases 
– Effect of alloying is dependent on the 

alloy 
– Unpredictable pyrophoric behavior of Pu 
– Pyrophoricity of corrosion products 
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THE EARLY YEARS 

Prior to 1960 
 • QUESTION FOR THE DAY 

 
When was the first oxidation experiment 

conducted? 
Where? 
By whom? 
What were the results? 
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THE EARLY YEARS 
1941 - 1960 

• The First Experimental Oxidation 
Experiment 
 
– Berkeley, February, 1941 
– Seaborg, Wahl, Kennedy, and McMillan 
– Minute quantity of new synthetic element (94) 

was oxidized 
– Experiment was key step in proof of existence 

of Pu 
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THE EARLY YEARS 
1941 – 1960 

• Experimental Studies 
– Kolodney – 1945 – small coupons showed 

effects of temperature and moisture. 
– Dempsey and Kay – 1957; Preliminary results 

• Temperature 40 – 487°C 
• 0% and 100% Relative Humidity 

– Findings reported by Dempsey and Kay and 
reinforced by others later: 

• Interference colors for oxide films 
• Kinetic anomalies near phase Pu boundaries 
• Pyrophoricity and Ignition Temperatures 

• Numerous experiments initiated 
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THE EARLY YEARS 
1941 – 1960 

• Oxidation of Pu in 
air 

• 205°,303°,416°, 
and 487°C 

• Introduction of 
kinetic anomalies 
 

• Dempsey & Kay  
1958  
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THE PROLIFIC YEARS  
1960 - 1985 

• Air oxidation of Pu 
• Anomalous kinetic 

behavior at low 
temperatures 

• Caused by Pu 
metal phase 
change ???????? 
 

• Thompson - 1963  
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Oxidation of Unalloyed Pu 

• Air – 200 ppm H2O 
• 3 Stage Kinetics 

– Parabolic 
– Linear 
– Transition/Linear 

• Temperature Effect 
– Kinetic anomaly at 

400°C 

– High self-heating at 
T>408°C 

• [Schnizlein and Fischer] 
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X-Ray Diffraction of Pu Oxides 
• Oxidation of Pu in O2 at  

305°C (Rate Maximum) 
– (a) Vacuum 
– (b) 2 millitorr O2 
– (c) 11 minute scan 
– (d) 30 minute scan 

• Oxidation at 420°C 
– Rate Minimum 
– PuO (PuOC) is primary 

 
• [Terada – 1969] 
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THE PROLIFIC YEARS 
1960-1985 

• Ellipsometer Measurements 
– Clean Pu coupons 
– Temperatures < 100°C 
– Oxygen atmosphere 
– Limiting oxide film thickness is ~1500Ǻ 

• Results 
– Limiting oxide film thickness is ~1500Ǻ 
– Parabolic kinetics for films > 200-400Ǻ and 

temperatures between 28 and 90°C 
– Retardation of oxidation by initial film of PuO (PuOC) 
– Product PuO2 
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Ellipsometric Measurement 
of Alloyed Pu Oxidation 

 
• Alloyed Pu Oxidation 
• Polished clean sample 
• 5.0 x 10-2 Torr oxygen 
• 30 to 90°C  
• Measured oxide film 

thickness 
 
 

• Larson & Cash 1969 

Mr. J. L. Stakebake is the sole 
contributer to the technical content 

of this presentation  Mr  Allen is 
      

    
 



Ellipsometric Measurement  
of Alloyed Pu Oxidation 

 
• Alloyed Pu Oxidation 
• Parabolic Rate for 

films greater than 
200-400 Å 

• Linear initial rate 
 

• Larson & Cash 1969 
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Oxide Film Thickness 
Film Thickness vs. Color 

• Polished Pu coupon 
• Argon Bombarded 
• Exposed to 50μ O2 
• Temperature 30-90°C 
• Ellipsometer Measure 
• Visual Monitoring of 

1st Order Colors 

 
• Neutral Silver   100Å 
• Gold                 400Å 
• Red Violet        525Å 
• Violet                575Å 
• Purple               600Å 
• Blue                  800Å 
• Silver Blue      1000Å 
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THE PROLIFIC YEARS 
1960-1985 

• Effect of Ga alloying 
– Air oxidation in moist air 
– Temperature 75°C 
– Rate decreases with Ga 

concentration 
– J. T. Waber - 1961 

• Other alloys also 
decrease oxidation 
– Al (comparable to Ga), Zr, Ce, 

Zn, are less effective 

• Some alloys enhance 
oxidation [ternary alloys] 
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THE PROLIFIC YEARS 
1960-1985 

Experimental Apparatus 
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GALLIUM ALLOY OXIDATION - RFP 
• Pu-Ga Alloy Oxidation 

– 150 - 500°C 
– Run at 278°C illustrated 
– 500 Torr dry air 

•  3-Stage Oxidation  
– I Parabolic kinetics - 

diffusion controlled 
– II Linear kinetics - 

constant film thickness 
– III Linear kinetics - 

interface controlled 
– I + II Paralinear 
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GALLIUM ALLOY OXIDATION - RFP 

• Dense Oxide Film 
– Initial formation in 

parabolic stage 
– Thickness depends on 

temperature 
– Range 2 -22 micron 
– > 400°C thickness is 

unpredictable 
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GALLIUM ALLOY OXIDATION - RFP 

• Kinetic Temperature 
Dependence 
– Linear Stage II 
– Discontinuity between 

~300-400°C  
– Suggests change in 

oxidation process or 
type of dense oxide 
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GALLIUM ALLOY OXIDATION - RFP 

• Sample vs. Gas-
Phase Temp.  
– Actual sample & 

gas T measured 
– Ideal (normal) 
– Observed 

sample 
– Exothermic 

heating > 435°C 
– Suggest onset of 

ignition  
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GALLIUM ALLOY OXIDATION - RFP 
• Constant Temp. 

Ignition 
– Temperature 

differential shown 
previously likely 
the result of pre-
ignition (Pitts ‘68) 

– Preignition here is 
for unalloyed Pu 

– Actual ignition 
was not observed 

– Ignition ~387°C 
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OXYGEN PRESSURE 
DEPENDENCE 

• Alloy Oxidation in Oxygen at 150-500°C 
• Oxygen Pressure  0.004 – 500 Torr 
• Stage I & II Independent of pressure for 

P<60 Torr [Temperature dependent] 

• P>60 Torr  
– k α P1/7-1/2 [Temperature dependent] 

• Stage III linear rate 
– Independent of pressure for P<37 Torr 
– k α P1 above 55 Torr and 400°C 
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Oxygen Pressure Dependence 
• Oxidation of Alloyed 

Pu – Stage I 
– Pressure independent 

at low P 
– Independent region is 

T dependent 
– Pressure dependent 

for P > 13 Torr 
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OXYGEN PRESSURE 
DEPENDENCE 

• High Temperatures 
– 465°C and 10 Torr 
– Stage III depends 

on availability of O2 

– O2 chemisorption  
– Sticking probability 

controls 
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Effects of H2O on Pu Oxidation 

• Unalloyed Pu 
• 190°C in oxygen 
• Water accelerates 

oxidation  
• No moisture effect 

above 215°C 
• Effect greater in inert 

gases 
 

• [Schnizlein and Fischer] 
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Effects of H2O on Pu Oxidation 
 

Glovebox oxidation of unalloyed Pu in air and 
nitrogen atmospheres 
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Plutonium-Water Reaction 

• Unalloyed Pu in 15 
Torr H2O Vapor 

• Complex Temp. 
Behavior 

• Multiple Products 
• Changing Kinetics 
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Plutonium-Water Reaction 

• Unalloyed Pu in 
15 Torr H2O 

• Arrhenius Plot 
– Poor correlation 

with metal phase 
– Good correlation 

with products 
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Plutonium-Water Reaction 

• Unalloyed Pu + 
Water Vapor 

• PuO2 at 60°C  
• PuO2 + Pu2O3 at 

350°C  
• New Oxide Peak 

at 250°C 
• BE Correlates to 

Pu(VI) 

Pu2O3 

Pu(VI) 

PuO2 
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Plutonium-Water Reaction 

• Data for 250°C & 15 
Torr water 

• Unalloyed rate ~5 X 
alloyed rate 

• Diverse Products 
– PuH2 
– PuOH 
– Pu2O3 
– PuO2 
– PuO2+δ 
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Plutonium-Water Reaction 

• Unalloyed Pu reaction 
with water vapor 

• 250°C, 15 Torr water 
• Localized pitting 
• The presence of a 

uniform hydride layer 
at the metal interface 
is unknown 
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Summary: Pu Oxidation 
Alloy, Oxygen, Moisture Effects 

• Kinetics in H2O and 
O2 are: 
– H2O dependent < 200°C 
– H2O independent > 200°C 
– O2 independent  < 200 °C 

• Alloying  

– Rate Suppressing 
– Suppression exceeds 

enhancement by H2O 
– Effect only < 400°C 
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Summary: Pu Oxidation 
Moisture Effects on Pu Oxidation in Air 

• Rate (R) α [H2O]n 

– n is temperature 
dependent 

• Effects of H2O 
persistent < 200°C as 
long as O2 is present 

• R (25°C,25 Torr H2) is 
200 times faster than 
R (25°C, 160 Torr O2) 
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Summary Oxidation Kinetics 
• General:   

– R = kexp(-Ea/R*T)(PO2)m(PH2O)n 

• [kinetic description depends on determining m, n, 
and Ea ] 

• Moisture Independent Region (T > 200°C) 
– lnR(R in mg cm-2 min-1) = 13.68 – (9010)/T 

 
• Moisture Dependent Region (T < 200°C) 

– lnR = -12.60 + 0.498 lnPH2O 
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Corrosion of Pu in Sea Water 
• Closed αPu 

System  
• Vented with sea water 
• Change of geometry 

by corrosion 
products? 
– Oxides 
– Hydrogen 

• Kinetics of reactions 
– k (mg/cm2) = 6.43t – 

0.01706t2 
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Corrosion of α Pu in Sea Water 

• Products 
• Solid  

– Pu(OH)4• X H2O 
• Gas 

– H2 

– 1.6 x 10-5 (mol/cm2hr) 
 

• Hodges, Haschke, Reynolds - 
1979 
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Plutonium Pyrophoricity 
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Plutonium Pyrophoricity 

• Metal Burning 
– Chemical Oxidation 
– Surface Reaction 
– Exothermic 
– Reaction Controlled 

Kinetics 

• Combustible Burning 
– Chemical Breakdown 
– Vapor Phase Reaction 
– Exothermic 
– Gas Diffusion 

Controlled 
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Plutonium Pyrophoricity 

• Ignition of 2kg Pu 
ingot 

• Stored in produce 
can 

• Exposed to water 
vapor 

• Corrosion ruptured 
the can 
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Plutonium Ignition Studies 

• Effects of Oxygen 
– Alloyed Pu 
– 140 mesh filings 
– Oxygen concentration 

• 3-22% 

• Findings 
– No ignition in < 3% O2 
– Ignition temperature 

constant  
– Burning temperature 

decreases with O2 
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Geometrical Effects on Pu Ignition 
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Examples of Pyrophoric Pu 

• Pyrophoric Residues 
– Unburned Brushed Oxide, Floor Sweepings, 

Casting Slag 
• Pyrophoric Metal / Compounds 

– Plutonium Hydride 
–  Plutonium Chips, Turnings, Films 

• Specifically 
– Pu metal < 0.5 mm thick or weighing < 2 g 
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Mechanism for Pu Pyrophoricity 

• Ignition Temperature 
– Surface: Mass Ratio 
– Particle Size 

• Critical Dimensions 
– 0.25 mm diameter 
– 0.088 mm thickness 

• Ignition Temperature 
– > 475-525°C  

• Sample Heating 
– Pu2O3     PuO2  
– Adiabatic heating of 

particles of less than 
critical dimensions 

– External heating of 
larger particles 

• Good Agreement with 
observations 
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Metal Explosibility 

• Uranium Ignition 
• Conditions 

– < 10 micron particles 
– Dispersed cloud 

• Temperature, 20°C 
• Pressures 

– 40-50 psig, max 
– 3000-7000 psi/sec 

 

• Plutonium Ignition 
• Conditions   

– <1 mm particles 
– Individual laser ignition 
– 40% exploded 

• Energy  
– Not measured 
– Appeared less then U  
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Pu Storage Issues 
Container Failures 

• Causes 
– Metal Oxidation 

• Can seal leak 
• Pu oxidation 
• Volume 

expansion fails 
can 

– Gas 
Pressurization 

• Moisture 
• Organics 
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Hanford Pu Storage - Szempruch 
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Failed Container 
RF Produce Can 

• ~ 2 kg Pu Ingot 
• Repeated exposure to 

water bath 
• Failure occurred 

when corrosion 
products expanded 
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Requirements for Safe Storage 
DOE Standard 3013 

 
• Calcination of oxide 

– Removal of organics 
– Removal of water 

• Good Container  
– Pressure resistant 
– Corrosion resistant 
– Proper sealing 
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Consequences of Not Meeting 
the Criteria 

– Inner 3013 can 
– Weld defect not 

detected 
– Metal button stored 

in SRS vault 
– Oxidation produced 

oxide that was 
released during 
storage and 
transfer  
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Potential Problems with Metal 
Stabilization 

• Pure Pu Button 
(Hanford) 

• Burned in air in a 
Hasteloy tray 

• Product presumed to 
be an oxidation 
resistant Pu-Ni alloy 
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Potential Problems with Oxide 
Stabilization 

• Oxide feed material 
produced by Pu metal 
oxidation 

• Pre-burning did not 
convert all Pu to oxide 

• Molten Pu corrosion 
of Inconel tray coated 
with Al 
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Conclusions 

• Objectives for early studies 
– Desire for rapid accumulation of data 

• Pu availability was limited 
• Use of bounding conditions 

– High Temperature 
– High Humidity 

• Application need was immediate 
– Choice of instrumentation was limited 

• Some measurements made under unrealistic 
conditions; e.g. ellipsometry 
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Conclusions 

• Objectives for studies in the prolific years 
– Need for defining behavior in production 

environments 
• New Pu alloys 
• New methods of production 
• Better environmental controls in gloveboxes 

– Need for capability to predict oxidation 
behavior 

– Availability of better instrumentation  
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Conclusions 

• Where are the holes in our knowledge? 
– Data needed under real conditions 

• Temperatures of 0 to 200°C 
• Moisture levels 200 to 20,000 ppm 

– Moisture dependent region needs data 
– Better instrumentation needs to be used 

• Kinetic measurements 
• Product characterization 

– Proposed models need further validation 
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